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Abstract

In the earlier work Gen. Rel. Grav. 40, 2201-2212 (2008) an oscillating
Universe in the linearized R

2 theory of gravity has been analyzed. In
that paper the linearized Ricci curvature generated a high energy term
which was identified as the Dark Energy of the Universe. The model was
consistent with the Hubble Law and the cosmological redshift.

After carefully reviewing previous results, in this work such a model
is improved. We show that the line element of the linearized R

2 theory is
solution of the exact theory too. The results of earlier linearized approach
are therefore consistent with the new model analyzed in the exact R

2

theory. The high energy associated to the Ricci curvature enables the
coupling constant of the R

2 term in the gravitational action to be very
small with respect to the linear term R. Accordingly, the deviation from
standard General Relativity results very weak and the theory can pass
the Solar System tests. A quantitative analysis on this critical point is
realized too. Other observations, like the anomalous acceleration of the
Pioneer and the Dark Matter in the galaxy, are consistent with the model.

The basic approach of this paper is that, in the exact R
2 gravity, a

wave-solution of a Klein-Gordon equation for the Ricci curvature could
solve some problems of the Dark Universe. The Ricci curvature represents
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a cosmological wave-packet with a wavelength longer than the Hubble
radius. With this assumption the wave-packet is frozen with respect to
the cosmological observations. Consequently, the theory results to be in
the form of standard General Relativity “embedded ” in an effective scalar

gravity. General Relativity results dominant a small scales, while the
effective scalar field, which is exactly the Ricci curvature, oscillates and
results dominant at longer scales.

Finally, a cosmological solution to the Einstein-Vlasov System is dis-
cussed. This solution shows reasonable results which are within the stan-
dard bounds predicted by the cosmological observations.

The model is also consistent with a recent result which shows that the
introduction of a non-linear electrodynamics Lagrangian in the framework
of R2 gravity permits to remove the Initial Singularity of the Universe and
to obtain a bouncing with a power-law inflation where the Ricci curvature
works like an inflaton field.

An important point is that, at the present time, a unique Extended
Theory of Gravity which is consistent with all the astronomical obser-
vations has not been found. The results of this paper suggest that the
cosmological wave-packet could be a potential candidate.

PACS numbers: 04.50.Kd, 98.80.Jk

Keywords: Gravitation; Cosmology; Dark Matter; Dark Energy; Extended
Theories of Gravity.

1 Introduction

Although Einstein’s General Relativity [1] achieved great success (see for exam-
ple the opinion of Landau who says that General Relativity is, together with
Quantum Field Theory, the best scientific theory of all [2]) and withstood many
experimental tests, it also displayed many shortcomings and flaws which today
make theoreticians question whether it is the definitive theory of gravity, see the
reviews [3, 4] and references within. As distinct from other field theories, like
the electromagnetic theory, General Relativity is very difficult to quantize. This
fact rules out the possibility of treating gravitation like other quantum theories,
and precludes the unification of gravity with other interactions. At the present
time, it is not possible to realize a consistent Quantum Gravity Theory which
leads to the unification of gravitation with the other forces. From an histori-
cal point of view, Einstein believed that, in the path to unification of theories,
quantum mechanics had to be subjected to a more general deterministic the-
ory, which he called Generalized Theory of Gravitation, but he did not obtain
the final equations of such a theory (see for example the biography of Einstein
in [5]). At present, this point of view is partially retrieved by some theorists,
starting from the Nobel Laureate G. ’t Hooft [6].

However, one has to recall that, during the last 30 years, a strong, critical
discussion about both General Relativity and Quantum Mechanics has been
undertaken by theoreticians in the scientific community. The first motivation
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for this historical discussion arises from the fact that one of the most important
goals of Modern Physics is to obtain a theory which could, in principle, show
the fundamental interactions as different forms of the same symmetry [3, 4].
Considering this point of view, today one observes and tests the results of one
or more breaks of symmetry. In this way, it is possible to say that we live in
an unsymmetrical world. In the last 60 years, the dominant idea has been that
a fundamental description of physical interactions arises from Quantum Field
Theory. In this tapestry, different states of a physical system are represented
by vectors in a Hilbert space defined in a spacetime, while physical fields are
represented by operators (i.e. linear transformations) on such a Hilbert space.
The greatest problem is that such a Quantum Mechanical framework is not
consistent with gravitation, because this particular field, i.e the metric hµν ,
describes both the dynamical aspects of gravity and the spacetime background.
In other words, one says that the quantization of dynamical degrees of freedom
of the gravitational field is meant to give a quantum-mechanical description
of the spacetime. This is an unequalled problem in the context of Quantum
Field Theories, because the other theories are founded on a fixed spacetime
background, which is treated like a classical continuum.

Thus, at the present time, an absolute Quantum Gravity Theory, which
implies a total unification of various interactions has not been obtained. In
addition, General Relativity assumes a classical description of the matter which
is totally inappropriate at subatomic scales, which are the scales of the relic
Universe [7, 8].

In the unification approaches, from an initial point of view, one assumes that
the observed material fields arise from superstructures like Higgs bosons or su-
perstrings which, undergoing phase transitions, generate actual particles. From
another point of view, it is assumed that geometry (for example the Ricci curva-
ture scalar R) interacts with material quantum fields generating back-reactions
which modify the gravitational action adding interaction terms (examples are
high-order terms in the Ricci scalar and/or in the Ricci tensor and non mini-
mal coupling between matter and gravity, see below). Various unification ap-
proaches have been suggested, but without palpable observational evidence in
a laboratory environment on Earth. Instead, in cosmology, some observational
evidences could be achieved with a perturbation approach [8]. Starting from
these considerations, one can define Extended Theories of Gravity those semi-
classical theories where the Lagrangian is modified, in respect of the standard
Einstein-Hilbert gravitational Lagrangian, adding high-order terms in the cur-
vature invariants (terms like R2, RαβRαβ , RαβγδRαβγδ, R!R, R!kR) or terms
with scalar fields non-minimally coupled to geometry (terms like φ2R), see [3, 4]
and references within. In general, one has to emphasize that terms like those
are present in all the approaches to the problem of unification between gravity
and other interactions. Additionally, from a cosmological point of view, such
modifications of General Relativity generate inflationary frameworks which are
very important as they solve many problems of the Standard Universe Model
[7, 8, 9].

In the general context of cosmological evidence, there are also other consid-
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erations which suggest an extension of General Relativity. As a matter of fact,
the accelerated expansion of the Universe, which is observed today, implies that
cosmological dynamics is dominated by the so called Dark Energy, which gives
a large negative pressure. This is the standard picture, in which this new ingre-
dient is considered as a source on the right-hand side of the field equations. It
should be some form of un-clustered, non-zero vacuum energy which, together
with the clustered Dark Matter, drives the global dynamics. This is the so called
“concordance model” (ΛCDM) which gives, in agreement with the CMBR, LSS
and SNeIa data, a good picture of the observed Universe today, but presents
several shortcomings such as the well known “coincidence” and “cosmological
constant” problems [10]. An alternative approach is changing the left-hand side
of the field equations, to see if the observed cosmic dynamics can be achieved by
extending General Relativity, see [3, 4] and references within. In this different
context, it is not required to find candidates for Dark Energy and Dark Matter,
that, till now, have not been found; only the “observed” ingredients, which are
curvature and baryon matter, have to be taken into account. Considering this
point of view, one can think that gravity is different at various scales and there
is room for alternative theories. In principle, the most popular Dark Energy
and Dark Matter models can be achieved considering f(R) theories of gravity,
where R is the Ricci curvature [3, 4]. In this picture, the sensitive detectors for
gravitational waves (GWs), like bars and interferometers, whose data analysis
recently started [11], could, in principle, be important. In fact, a consistent GW
astronomy will be the definitive test for General Relativity or, alternatively, a
strong endorsement for Extended Theories of Gravity [12].

In [13], an oscillating Universe has been discussed in the linearized R2 theory
of gravity. The R2 theory was originally proposed in [9] with the aim of obtaining
the cosmological inflation. Such a theory is the simplest among the f(R) theories
of gravity and the cosmological redshift and the Hubble law, are consistent with
the model in [13].

After carefully reviewing previous results, in this work such a model is im-
proved. The new analysis shows that the line element of the linearized R2 theory
is a solution of the exact theory too. The results of the previous linearized ap-
proach in [13] are therefore consistent with the new model analyzed in the exact
R2 theory. The high energy associated to the Ricci scalar curvature enables the
coupling constant of the R2 term in the gravitational action to be very small
with respect to the linear term R. Then, the deviation from standard General
Relativity results very weak and the theory can pass the Solar System tests.
A quantitative analysis of this important point is realized too. Other observa-
tions, like the anomalous acceleration of the Pioneer and the Dark Matter in
the galaxy, are consistent with the model.

The basic approach of this paper is that, in the exact R2 gravity, a wave-
solution of a Klein-Gordon equation for the Ricci scalar could solve some prob-
lems of the Dark Universe. The Ricci scalar is considered a cosmological wave-
packet with a wavelength which is longer than the Hubble radius. This assump-
tion implies that the wave-packet is frozen with respect to the cosmological
observations. Consequently, the theory results to be in the form of standard
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General Relativity “embedded ” in an effective scalar gravity. General Relativity
results dominant a small scales, while the effective scalar field, which is exactly
the Ricci scalar, by following the idea in [9], oscillates and results dominant at
longer scales.

Finally, a cosmological solution to the Einstein-Vlasov System is discussed.
This solution shows reasonable results which are within the standard bounds
predicted by the cosmological observations.

The model is also consistent with the recent result in [29], which shows that
the introduction of a non-linear electrodynamics Lagrangian in the framework
of R2 gravity permits to remove the Initial Singularity of the Universe and to
obtain a bouncing with a power-law inflation where the Ricci curvature scalar
works like an inflaton field.

An important point is that, at the present time, a unique Extended Theory of
Gravity which is consistent with all the astronomical observations has not been
found [3, 4]. The results of this paper suggest that the cosmological wave-packet
could be a potential candidate.

2 A review of preview results in the linearized

theory

2.1 The linearized field equations

Let us start from the action [9, 13]

S =

∫
d4x

√
−g(R+ bR2) + Lm. (1)

Equation (1) is a different choice with respect to the well known canonical one
of General Relativity, the Einstein - Hilbert action [2], which is

S =

∫
d4x

√
−gR+ Lm. (2)

As the gravitational Lagrangian is non-linear in the curvature invariants, the
Einstein field equations have an order higher than second [3, 4, 9, 13]. For
this reason such theories are called higher-order gravitational theories. This is
exactly the case of the action (1). The model arising from the action (1) is well
consistent with the temperature anisotropies observed in CMB and thus it can
be a viable alternative to the scalar field models of inflation [3, 4].

Before starting the analysis notice that in this paper natural units 8πG = 1,
c = 1 and ! = 1 are used, while the sign conventions for the line element, which
generate the sign conventions for the Riemann/Ricci tensors, are

(+,-,-,- ). Greek indices run from 0 to 3.
By varying the action (1) with respect to gµν the field equations are obtained

[9, 13]
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Gµν + b{2R[Rµν − 1
4gµνR]+

−2R;µ;ν + 2gµν!R} = T (m)
µν .

(3)

The trace of such field equations gives a Klein - Gordon equation for the Ricci
curvature

!R = E2(R+ T ), (4)

where ! is the d’Alembertian operator. The energy E is introduced for dimen-
sional motivations: E2 ≡ 1

6b [9, 13].

In the above equations T (m)
µν is the ordinary stress-energy tensor of the mat-

ter. Clearly, General Relativity is obtained for b = 0.

We re-analyze the linearized theory in vacuum (T (m)
µν = 0) with a little

perturbation of the background, which is assumed given by a Minkowskian
background. The computation follows [13] step by step, but in a way which
emphasizes the role of the (linearized) Ricci scalar.

Let us write [13]

gµν = ηµν + hµν . (5)

By considering the first order in hµν and by calling R̃µνρσ , R̃µν and R̃ the
linearized quantity which correspond to Rµνρσ , Rµν and R, the linearized field
equations are

R̃µν − R̃
2 ηµν = −∂µ∂νaR̃+ ηµν!aR̃

!R̃ = E2R̃.

(6)

R̃µνρσ and eqs. (6) are invariants for gauge transformations [13]

hµν → h′
µν = hµν − ∂(µϵν)

R̃ → R̃′ = R̃.
(7)

If one defines

h̄µν ≡ hµν −
h

2
ηµν + ηµνbR̃, (8)

the transform for the parameter ϵµ

!ϵν = ∂µh̄µν , (9)

permits to choose a gauge parallel to the Lorenz one of the electromagnetic
theory

∂µh̄µν = 0. (10)
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In this gauge the field equations read like

!h̄µν = 0 (11)

!bR̃ = E2bR̃. (12)

Solutions of eqs. (11) and (12) are plan waves [13]

h̄µν = Aµν(−→p ) exp(ipαxα) + c.c. (13)

bR̃ = a(−→p ) exp(iqαxα) + c.c. (14)

where

pα ≡ (ω,−→p ) ω = p ≡ |−→p |

qα ≡ (ωE ,−→p ) ωE =
√
E2 + p2,

(15)

and a in eq. (14) is a real number.
Eqs. (11) and (13) are the equation and the solution for the tensor waves

exactly like in General Relativity [14], while eqs. (12) and (14) are respectively
the equation and the solution for the third mode.

The dispersion law for the modes of R̃ is not linear. The velocity of every
“ordinary” (i.e. which is present in standard General Relativity too) mode h̄µν is
the light speed c, but the dispersion law (the second of eq. (15)) for the modes of
R̃ is the one of a wave-packet [13]. The group-velocity of a wave-packet centered
in −→p is

−→vG =
−→p
ω
. (16)

From the second of eqs. (15) and eq. (16) one gets

vG =

√
ω2 − E2

ω
, (17)

which can be written as

E =
√
(1− v2G)ω. (18)

The analysis remains in the Lorenz gauge by choosing transformations of the
type !ϵν = 0. This gauge gives a condition of transverse effect for the ordinary
tensor part of the field: kµAµν = 0. But it does not give the transverse effect
for the total field hµν . From eq. (8) we obtain

hµν = h̄µν −
h̄

2
ηµν + ηµνbR̃. (19)

At this point in standard General Relativity [14] one applies the condition
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!ϵµ = 0

∂µϵµ = − h̄
2 + bR̃.

(20)

This condition gives the total transverse effect of the field. But, in the present
case, this is impossible [13]. In fact, by applying the d’Alembertian operator to
the second of eqs. (20) and by using the field equations (11) and (12) we get

!ϵµ = E2bR̃, (21)

which is in contrast with the first of eqs. (20). This critical point is consistent
with claiming that it does not exist any linear relation between the tensor field
h̄µν and the energetic scalar field R̃ [13]. A gauge in which hµν is purely spatial
cannot be chosen (i.e. we cannot choose hµ0 = 0, see eq. (19)).

But the traceless condition to the pure tensor field h̄µν can be used [13]

!ϵµ = 0

∂µϵµ = − h̄
2 .

(22)

These equations imply

∂µh̄µν = 0. (23)

To enable the conditions ∂µh̄µν and h̄ = 0, transformations like

∂µ!ϵµ = 0

∂µϵµ = 0
(24)

can be used. By taking −→p in the z direction, a gauge in which only A11, A22,
and A12 = A21 are different to zero can be chosen. The condition h̄ = 0 gives
A11 = −A22. Putting these equations in eq. (19) we obtain

hµν(t, z) = A+(t− z)e(+)
µν +A×(t− z)e(×)

µν + bR̃(t− vGz)ηµν . (25)

The term A+(t − z)e(+)
µν + A×(t − z)e(×)

µν describes the two standard tensor
polarizations of gravitational waves which are present in General Relativity [14],
while the term bR̃(t,−vGz)ηµν is the term due to the high energy term in the
R2 theory [13].

In other words, the Ricci scalar results a third polarization for gravitational
waves which is not present in standard General Relativity. This third mode
associates an intrinsic mass-energy E, and therefore an intrinsic curvature, to
the spacetime (see equation (12)) [13].
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2.2 The oscillating Universe

Following [13] we assume that, at cosmological scales, the third mode becomes
dominant (i.e. A+, A− ≪ bR̃(t, z)). In the model the “curvature energy” is the
Dark Energy of the Universe which enables an average density of ≃ 10−29g/cm3

[15].
Eq. (25) can be rewritten as

hµν(t, z) = bR̃(t, z)ηµν (26)

and the correspondent line element is the conformally flat one [13]

ds2 = [1 + bR̃(t, z)](dt2 − dz2 − dx2 − dy2). (27)

Defining

a2 ≡ 1 + bR̃(t, z), (28)

the line element (27) results similar to the cosmological Friedmann-Robertson-
Walker (FRW) line element of the standard homogeneous, isotropic and flat
Universe [2, 7, 8, 10, 13, 14]

ds2 = [a2(t, z)](dt2 − dz2 − dx2 − dy2). (29)

Strictly speaking, this metric does not describe an homogeneous and isotropic
universe. In fact R̃ is a function of z too. Thus, we have to further assume
∂zR̃ = 0, which removes the z-dependence [13, 28]. We will use this constraint
in some computations in the following. Thus, the line element becomes

ds2 = a2(t)(dt2 − dz2 − dx2 − dy2). (30)

Readers could be shocked that we claim to arrive at the metric describing the
universe as a perturbation about the Minkowski spacetime. But the key point
here is that in Subsection 3.1 we will show that the line element (30) is also
solution of the exact theory. In other words, the linearized process that we
developed above is only a mathematical tool to obtain the line element (30),
while physical consistence will be given in Subsection 3.1 by showing that the
line element (30) is solution of the exact theory too. This important point must
be keep in mind in the following discussion.

Considering the wave-solution (14) we can write

a ≃ 1 +
1

2
bR̃(t). (31)

This equation shows that the scale factor of the Universe oscillates near the
(normalized) unity.

Before starting the analysis, let us recall that observations today agree with
homogeneity and isotropy. In fact, over the past century, a standard cosmolog-
ical model has emerged. With relatively few parameters, the model describes
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the evolution of the Universe and astronomical observations on scales ranging
from a few to thousands of Megaparsecs. In this model the Universe is spatially
flat, homogeneous and isotropic on large scales, composed of radiation, ordi-
nary matter (electrons, protons, neutrons and neutrinos), non-baryonic Cold
Dark Matter, and Dark Energy. The galaxies and the large-scale structures
grew gravitationally from tiny, nearly scale-invariant adiabatic Gaussian fluc-
tuations [2, 7, 8, 10, 13, 14]. The WMAP data offer a demanding quantitative
test of this model [15].

In other words, the Universe is seen like a dynamic and thermodynamic
system. The test masses (i.e. the “particles”) are the galaxies which are stellar
systems with a number of the order of 109−1011 stars. The galaxies are located
in clusters and super clusters, and observations show that, on cosmological
scales, their distribution is uniform. These assumption can be summarized in the
Cosmological Principle: the Universe is homogeneous everywhere and isotropic
around every point [14]. The Cosmological Principle simplifies the analysis of
the large scale structure. It implies that the proper distances between any two
galaxies is given by an universal scale factor which is the same for any couple
of galaxies [2, 7, 8, 10, 13, 14].

Now, the analysis can start.
Cosmological observations are usually carried on Earth and, in any case,

within the Solar System. In the linearized theory, the coordinate system in
which the space-time is locally flat has to be used and the distance between any
two points (the galaxies) is given simply by the difference in their coordinates
in the sense of Newtonian physics [14]. This frame is the proper reference frame
of a local observer, which we assume to be located within the Solar System. In
this frame gravitational signals manifest them-self by exerting tidal forces on
the test masses. In other words, we assume that the space-time within the Solar
System is locally flat with respect to the global curvature of the Universe which
is described by the line element (27) [13].

By using the proper reference frame of a local observer the time coordinate
x0 is the proper time of the observer O and the spatial axes are centered in O.
In the special case of zero acceleration and zero rotation the spatial coordinates
xj are the proper distances along the axes and the frame of the local observer
reduces to a local Lorentz frame [14]. The line element is

ds2 = (dx0)2 − δdxidxj −O(|xj |2)dxαdxβ . (32)

The effect of the gravitational force on test masses is described by the equation

ẍi = −R̃i
0k0x

k, (33)

which is the equation for geodesic deviation in this frame [14]. R̃i
0k0 is the

linearized Riemann tensor [14].
To study the effect of the cosmological wave-packet on the galaxies, R̃i

0k0 has
to be computed in the proper reference frame of the Solar System. But, because
the linearized Riemann tensor R̃µνρσ is invariant under gauge transformations
[14], it can be directly computed from eq. (26).
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From [13, 14] we get

R̃µνρσ =
1

2
{∂µ∂βhαν + ∂ν∂αhµβ − ∂α∂βhµν − ∂µ∂νhαβ}, (34)

that, in the case of eq. (26), gives

R̃α
0γ0 =

b

2
{∂α∂0R̃η0γ + ∂0∂γR̃δα0 − ∂α∂γR̃η00 − ∂0∂0R̃δαγ }. (35)

The different elements are (only the non zero ones will be written down explic-
itly) [13]

∂β∂0R̃η0γ =

⎧
⎨

⎩

∂2
t R̃ for α = γ = 0

−∂z∂tR̃ for α = 3; γ = 0

⎫
⎬

⎭
(36)

∂0∂γR̃δα0 =

⎧
⎨

⎩

∂2
t R̃ for α = γ = 0

∂t∂zR̃ for α = 0; γ = 3

⎫
⎬

⎭
(37)

−∂α∂γR̃η00 = ∂α∂γR̃ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂2
t R̃ for α = γ = 0

∂2
z R̃ for α = γ = 3

−∂t∂zR̃ for α = 0; γ = 3

∂z∂tR̃ for α = 3; γ = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

−∂0∂0R̃δαγ = −∂2
t R̃ for α = γ . (39)

By inserting these results in eq. (35) we obtain [13]

R̃1
010 = − b

2
¨̃
R

R̃2
010 = − b

2
¨̃
R

R̃3
030 = b

2 (∂
2
z R̃− ∂2

t R̃).

(40)

The constraint on the homogeneity and isotropy implies ∂zR̃ = 0, therefore eqs.
(40) become

R̃1
010 = − b

2
¨̃
R

R̃2
020 = − b

2
¨̃
R

R̃3
030 = − b

2
¨̃
R.

(41)
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Eqs. (41) show that the oscillations of the Universe are the same in any direction.
In fact, using eq. (33), we obtain

ẍ =
b

2
¨̃
Rx, (42)

ÿ =
b

2
¨̃
Ry (43)

and

z̈ =
b

2
¨̃
Rz. (44)

These are three perfectly symmetric oscillations [13].

2.3 Cosmological observations

2.3.1 The Hubble law

The observations of E. Hubble in 1929 had been the first historical proof of
the expansion of the Universe [2, 7, 8, 10, 13, 14]. The Hubble law states
that galaxies which are at a distance D drift away from Earth with a velocity
[2, 7, 8, 10, 13, 14]

v = H0D. (45)

The today’s Hubble expansion rate is [15]

H0 = h100
100Km

sec×Mpc
= 3.2× 10−18h100

sec
. (46)

A dimensionless factor h100 is included, which now is just a convenience (in the
past it came from an uncertainty in the value of H0). From the WMAP data it
is h100 = 0.72± 0.05 [15].

Following [13] we call f the frequency of the “cosmological” gravitational

wave-packet that is represented by bR̃ in eq. (27). We also assume that f ≪
H0 (i.e. the gravitational wave is “frozen” with respect to the cosmological
observations) [13]. The observations of Hubble and the more recent ones show
that the oscillating Universe has to be in the expansion phase.

The assumption of homogeneity and isotropy implies that only the radial
coordinate can be taken into account.

By using spherical coordinates equations (42), (43) and (43) give an equation
for the distance D

D̈ =
b

2
¨̃
RD. (47)

Equivalently, one can say that there is a gravitational potential [14]

V (
−→
D, t) = −

d

4
¨̃
R(t)D2, (48)
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which generates the tidal forces and that the motion of the test masses is gov-
erned by the Newtonian equation [14]

−̈→r = −▽ V. (49)

The solution of eq. (47) can be found by using the perturbation method [13, 14],
obtaining

D = D0 +
b

2
D0R̃(t) = (1 +

b

2
R̃)D0 = a(t)D0 (50)

By deriving this equation with respect to the time we get

Ḋ = D0ȧ (51)

Thus, the Hubble law is obtained

Ḋ

D
= H0, (52)

where

H0 = (
ȧ

a
)0. (53)

2.3.2 The cosmological redshift

Following [13], the conformally flat line element (29) can be rewritten in spher-
ical coordinates

ds2 =
[
1 + bR̃(t)

] [
dt2 − dr2 − r2(dθ2 + sin2 θdϕ2)

]
. (54)

The assumption of homogeneity and isotropy permits to neglect the angular
coordinates in eq. (54). Then, the condition of null geodesic on the radial
coordinate gives

dt2 = dr2. (55)

By using eq. (55) the coordinate velocity of the photon in the gauge (54) is
equal to the speed of light. In fact, if we use the coordinates (54), t represents
a time coordinate instead of a proper time. The rate dτ of the proper time
(distance) is related to the rate dt of the time coordinate from [2]

dτ2 = g00dt
2. (56)

Eq. (54) gives g00 = (1 + bR), and using eq. (55) we obtain

dτ2 = (1 + bR̃))dr2 (57)

and

dτ = ±[(1 + bR̃)]
1

2 dr ≃ ±[(1 +
b

2
R̃)]dr. (58)
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Assuming that photons are traveling by the galaxy to Earth, we choose the
negative sign [13].

Eq. (58) can be integrated obtaining

∫ τ0

τ1

dτ

1 + b
2 R̃(t)

=

∫ 0

rg

dr = rg, (59)

where τ1 and τ0 are the instants of emission (in the galaxy) and reception (on
Earth) of the photon respectively. If the light is emitted with a delay △τ1 it
arrives on Earth with a delay △τ0. Then

∫ τ0

τ1

dτ

1 + b
2 R̃(t)

=

∫ τ0+△τ0

τ1+△τ1

dτ

1 + b
2 R̃(t)

= rg. (60)

The radial coordinate rg is comoving (i.e. constant in the gauge (54)). In fact,
the assumption of homogeneity and isotropy implies ∂zR = 0, which removes the
z dependence in the line element (29). The only dependence in the line element
(54) is the t dependence in the scale factor a = 1 + b

2R(t). From equation (60)
we get [13] ∫ τ0

τ1
dτ

1+ b
2
R(t)

=
∫ τ0
τ1

dτ
1+ b

2
R(t)

+

+
∫ τ0+△τ0
τ1

dτ
1+ b

2
R(t)

−
∫ τ1+△τ1
τ0

dτ
1+ b

2
R(t)

,
(61)

which gives ∫ τ0+△τ0

τ1

dτ

1 + b
2R(t)

=

∫ τ1+△τ1

τ0

dτ

1 + b
2R(t)

. (62)

This equation can be simplified, obtaining

∫ △τ0

0

dτ

1 + b
2R(t)

=

∫ △τ1

0

dτ

1 + b
2R(t)

, (63)

and
△τ0

1 + b
2R(t0)

=
△τ1

1 + b
2R(t1)

. (64)

Then
△τ1
△τ0

=
1 + b

2R(t1)

1 + b
2R(t0)

=
a(t1)

a(t0)
. (65)

Frequencies are inversely proportional to times, thus

f0
f1

=
△τ1
△τ0

=
1 + b

2R(t1)

1 + b
2R(t0)

=
a(t1)

a(t0)
. (66)

The definition of the redshift parameter

z ≡
f1 − f0

f0
=

△τ0 −△τ1
△τ1

, (67)
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together with eq. (65) gives

z =
a(t0)

a(t1)
− 1, (68)

which is well known in the literature [2, 7, 8, 10, 13, 14].
Thus, the model looks consistent with the Hubble law and the cosmological

redshift.

3 New results

3.1 The line element like solution of the exact R2 theory

In this subsection we show that the line element (27), which is solution of the
linearized field equations (6), is solution of the exact field equations in vacuum

Gµν + b{2R[Rµν − 1
4gµνR]+

−2R;µ;ν + 2gµν!R} = 0
(69)

too.
The trace of eq. (69) is

!R = E2R. (70)

By inserting the line element (27) in eq. (69), one gets four equations

(b
˙̃
R)2 + 4π

3
(1+bR̃)3

2bR̃+1

[
2b2R̃3 + bR̃2 − bR̃+ 12b(b

˙̃
R)2

]
= 0

b2

v2

G

(R̃′)2 + 4π
3

(1+bR̃)3

2bR̃+1

[
2b2R̃3 + bR̃2 − bR̃+ 12b(b

˙̃
R)2

]
= 0,

b
¨̃
R = (b

˙̃
R)2

2+2bR̃

b
v2

G

R̃′′ = (bR̃′)2

v2

G(2+2bR̃)

(71)

where
˙̃
R ≡ ∂R̃

∂t
and R̃′ ≡ ∂R̃

∂z
.

Eq. (14) implies ∂R̃
∂t = −vG

∂R̃
∂z . Then, one obtains only two independent

equations in the system (71), i.e.

(b
˙̃
R)2 + 4π

3
(1+bR̃)3

2bR̃+1

[
2b2R̃3 + bR̃2 − bR̃+ 12b(b

˙̃
R)2

]

and

b
¨̃
R = (b

˙̃
R)2

2+2bR̃
.

(72)

A direct substitution of the wave-packet (14) in eqs. (72) shows that such
equations are satisfied.
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The result is not totally surprising for two motivations. First, the trace of
the linearized field equation in vacuum, i.e. the second of equations (6), is equal
to the trace of the exact field equations (70). Second, it is well known from
various papers in the literature that gravitational waves are exact solutions of
the “full” field equations in standard General Relativity too [16, 17, 18, 19].

Subsequent to this analysis we argue that if one uses the line element (27)
and/or the wave-packet (14) the linearized theory coincides with the exact the-
ory. Thus, in the following analysis we can substitute the linearized Ricci cur-
vature R̃ with the ordinary one R. The line element (27) is rewritten as

ds2 = [1 + bR(t, z)](dt2 − dz2 − dx2 − dy2). (73)

3.2 Viability of the model

The R2 theory is the simplest among the class of viable models with Rm terms.
Such models may lead to the (cosmological constant or quintessence) accelera-
tion of the universe as well as an early time inflation [3, 4]. Moreover, they seem
to pass the Solar System tests, i.e. they have an acceptable Newtonian limit, no
instabilities and no Brans-Dicke problem (decoupling of scalar) in scalar-tensor
version.

By assuming a value of ≃ 10−29g/cm3 [15] for the average density of the
Dark Energy of the Universe, we get a ≃ 10−46cm4 in natural units. This
enables the constant coupling of the R2 term in the gravitational action to be
infinitesimal with respect to the linear term R. The variation from standard
General Relativity is very weak and the theory can pass the Solar System tests.
Regarding this important issue, it is important to provide citations of antecedent
work illustrating this and explicitly show that the bounds there agree with the
preferred values of the Dark Energy. The key point is that, as the effective
scalar field arising from curvature is very energetic, the constant coupling of the
the R2 non linear term → 0. In this case, the Ricci curvature, which is an extra
dynamical quantity in the metric formalism, must have a range longer than the
size of the Solar System. An important work is [20], where it is shown that this
is correct if the effective length of the scalar field l is much shorter than the value
of 0.2mm. In such a case, the presence of this effective scalar is hidden from
Solar System and terrestrial experiments. The value of the Dark Energy that
we are assuming here guarantees the condition l ≪ 0.2mm. Another important
test concerns the deflection of light by the Sun. This effect was studied in
R2 gravity by calculating the Feynman amplitudes for photon scattering. To
linearized order, this deflection is the same as in standard General Relativity
[21].

For a sake of completeness, in the following the viability of the model is
discussed by using a different analysis.

The condition f ≪ H0 guarantees that the Ricci curvature remains frozen,
i.e. constant, in respect to the scale of the Solar System. Thus, one puts

bR = K = constant. (74)
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Let us search variations from standard General Relativity within the Solar Sys-
tem by considering a spherically symmetric Schwarzschild-like metric generated
by the solar mass M⊙ with the corrections that are generated by the Ricci
curvature [22]

ds2 = − exp(−λr)dt2 + exp(λr)dr2 + r2(dθ2 + sin2 θdϕ2). (75)

Following [22], the Ricci scalar is given by

R = exp(−λr)(λ′′ − λ′2 +
4λ′

r
−

2

r2
) +

2

r2
, (76)

where ′ represents derivation in respect to r.
By inserting the condition (74) in eq. (76) we get [22]

λ(r) = − ln(
α

r
−

β

r2
−

K

12b
r2). (77)

We choose α = −2M, β = 0 in analogy with the standard Schwarzschild metric,
then [2, 22]

ds2 = −(1−
2M

r
−

K

12b
r2)dt2+(1−

2M

r
+

K

12b
r2)−1dr2+r2(dθ2+sin2 θdϕ2). (78)

This metric is similar to the Schwarzschild–de Sitter space in the standard
Einstein-Hilbert action with cosmological constant [2, 22]. R = K

b
= 4Λ plays

the role of the cosmological constant. The calculation of the perihelion of Mer-
cury in standard General Relativity with cosmological constant has been shown
in [23]. The result was a constraint Λ < 10−55cm−2. This implies a constraint on
the frozen Ricci scalar: R < 10−55cm−2. In this way, the deviation of the space-
time (73) from flatness within the Solar System is infinitesimal at the present
cosmological Era: bR = K < 10−101.

The geometrical interpretation of the above analysis is that the theory results
to be in the form of standard General Relativity “embedded ” in an effective scalar
gravity. General Relativity results dominant a small scales like the scale of the
Solar System. The effective scalar field, which is exactly the Ricci curvature,
oscillates and results dominant at longer scales.

3.3 Astrophysical observations: Pioneer anomaly and Dark
Matter within the galaxy

In the linearized theory computations are simper than computations in the exact
theory. Thus, we continue to use the linearized theory in this subsection by
keeping in mind that the linearized theory and the exact theory are equivalent
for the wave-packet R.
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Considering the scales of the galaxy and of the Solar System we have to
remove the assumption of homogeneity and isotropy. Eqs. (40) become

R̃1
010 = − b

2
¨̃
R

R̃2
010 = − b

2
¨̃
R

R̃3
030 = b

2!R̃.

(79)

Inserting the field equation (12) in the third of eqs. (79) we get

R̃3
030 =

1

2
E2R̃. (80)

Eq. (33) gives three oscillations

ẍ =
b

2
¨̃
R(t, z)x, (81)

ÿ =
b

2
¨̃
R(t, z)y (82)

and

z̈ = −
b

2
E2R̃(t, z)z. (83)

The resultant of these three oscillations represents an extra acceleration −→a e.
Again, one assumes f ≪ H0, which guarantees that the Ricci curvature R
remains frozen, i.e. constant, in respect to the galactic scale. This assumption
implies that the extra acceleration depends only by the position.

By adding the standard Newtonian acceleration one obtains

−→a tot = −→a n +−→a e (84)

where the total acceleration −→a tot is given by the ordinary Newtonian accelera-
tion −→a n plus the extra acceleration −→a e.

As the extra acceleration depends by the position, only phenomenology can
help in its identification.

In a galactic context it is natural to identify ae with a0 ≃ 10−10m/s, which is
the acceleration used in the theoretical context of Modified Newtonian Dynamics
to achieve Dark Matter into galaxies [24].

From another point of view, in the Solar System, if the anomaly in Pio-
neer acceleration [25] is not generated by systematic effects, but a real effect is
present, one can in principle put

ae = aPi ≃ 8.5× 10−10m/s2. (85)

Thus, the proposed approach allows for a unified explanation of the two effects.
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3.4 Cosmology of the Einstein-Vlasov system

In this subsection, following the analysis in [28], the Einstein-Vlasov system
[26, 27, 28] is analyzed for the homogeneous isotropic spacetime generated by
the line element (73). For a Universe consisting of galaxies with negligible
baryon mass (massless particles in the Einstein-Vlasov system), the equation
for the scale factor is solved analytically. Considering galaxies like massless par-
ticles represents a good approximation [28]. In fact, astronomical observations
show that Dark Matter and Dark Energy, that we discussed like pure effects
of curvature in previous analyses, represent the 95% of the mass-energy of the
Universe [10, 15]. The remaining 5% of baryon mass is neglected in the following
analysis.

The condition that the particles in the spacetime make up an ensemble with
no collisions is satisfied if the particle density is a solution of the Vlasov equation
[26, 27, 28]

∂tf +
pa

p0
∂xaf − Γa

µν

pµpν

p0
∂paf = 0, (86)

where Γα
µν are the Christoffel coefficients, f is the particle density and p0 is

given by pa(a = 1, 2, 3) according to the relation [26, 27, 28]

gµνp
µpν = −1. (87)

Eq. (87) implies that the four momentum pµ lies on the mass-shell of the
spacetime [26, 27, 28].

We recall that, in general, the Einstein-Vlasov system is given by [26, 27, 28]

∂tf + v ·▽xf −▽xU ·▽vf = 0

▽ " U = 4πρ

ρ(t, x) =
∫
dvf(t, x, v),

(88)

where t denotes the time and x and v the position and the velocity of the
galaxies. The function U = U(t, x) is the average Newtonian potential generated
by the galaxies. This system represents the non-relativistic kinetic model for an
ensemble of particles with no collisions interacting through gravitational forces
which they generate collectively [26, 27, 28].

Thus, such a system can be used for a description of the motion of the
galaxies in the Universe if galaxies are considered as point-like particles, and
the relativistic effects are negligible[26, 27, 28]. In this approach, the function
f(t, x, v) in the Einstein-Vlasov system (88) gives the density on phase space of
the galaxies within the Universe.

By using the classical transformation from conformal time to synchronous
time [14, 28]

dt →
dt√

1 + bR(t, z)
(89)
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the line element (73), in spherical coordinates, becomes

ds2 = dt2 − [1 + bR(t, z)](dr2 + r2(dθ2 + sin2 θdϕ2)). (90)

The metric tensor has the form [28]

gµν =

⎛

⎝
1 0

0 γmn

⎞

⎠ , (91)

where γmn = 1+ bR(t, z).
Following [2, 28] we define χmn ≡ ∂

∂t
γmn. The Einstein field equations in the

synchronous frame are:

R0
0 = −

1

2

∂

∂t
χa
a −

1

4
χb
aχ

a
b = (T 0

0 −
1

2
T ) (92)

R0
a =

1

2
(χb

a;b − χa
b;a) = T 0

a (93)

Rb
a = −P b

a −
1

2
√
γ

∂

∂t
(
√
γχb

a) = T b
a −

1

2
δbaT, (94)

where P b
a is the Ricci tensor in 3 dimensions [2, 28].

On the other hand, the Einstein field equations in the Einstein-Vlasov system
are [26, 27, 28]

Gµν =
2√
−g

∫
f(t, x, p)pµpνδ(p

2 +m2)d4p. (95)

We can split the function f(t, x, p) into a couple of equations for f+(t, x, p)
and f−(t, x, p) which are constructed by reducing f(t, x, p) respectively on the
”upper” half and on the ”lower” half of the mass shell [28]. Eq. (86) becomes
[28]

∂tf± = −
1

p0±

(
γmnpn

∂

∂xm
−

1

2

∂γnr

∂xm
pnpr

∂

∂pm

)
f±. (96)

Eq. (96) can be interpreted in Hamiltonian terms [28]:

p0±∂tf± = {H, f±}, (97)

where the Hamiltonian function is

H ≡
1

2
γmnpmpn. (98)

One can calculate the components of energy-momentum tensor Tµν in the ap-
proximation which considers galaxies like massless particles (m = 0 in eq. (95))
[28]
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T00 =
1

(
√
1 + bR(t, z))3r2 sin θ

∫
f+ + f−√
1 + bR(t, z)

√
p21 + p22

r2
+

p23
r2 sin θ

d3p (99)

Tmn =
1

(
√
1 + bR(t, z))3r2 sin θ

∫ √
1 + bR(t, z)

(f+ + f−)√
p2
1
+p2

2

r2 + p2
3

r2 sin θ

pmpnd
3p

(100)

T0m =
1

(
√
1 + bR(t, z))3r2 sin2 θ

∫
(f+ − f−)pmd3p. (101)

The Einstein field equations (92), (93) and (94) give two independent dy-
namic equations which can be written down in terms of the scale factor a =√
1 + bR(t, z) [28]:

ȧ2 = −1 +
1

3a

∫
(f+(s) + f−(s))

s

a
d3s (102)

ä = −
2

a
− 2

ȧ2

a
+

1

a2

∫
(f+(s) + f−(s))d

3s, (103)

where [28]

s ≡ p21 +
p22
r2

+
p23

r2 sin2 θ
. (104)

By introducing the dimensionless variables r and t we put [28]

a = a0r

t = a0t

ṙ = dr
dt

j = 1
3a

2
0ρ0.

(105)

Eq. (102) becomes [28]
ṙ2 = −1 + j

r2

r0 = 1.
(106)

The solution of the system (106) is [28]

r(t) =
√
j − (t−

√
j − 1)2 (107)

if j ≥ 1. Returning to the (t, a) variables we get:
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a(t) = a0

√
a20ρ0
3

− (
t

a0
−
√

a20ρ0
3

− 1)2. (108)

The today’s observed Hubble radius and the today’s observed density of the
Universe are respectively [15] a0 # 1028cm and ρ0 ≈ 10−57cm−2. Therefore
j ≈ 1.

By inserting these data in eq. (108) we obtain a singularity at a time ts ≈
−1010seconds and a value for the today’s theoretical Hubble constant H0 =
ȧ0

a0
≈ 10−29cm−1.
As follows from the above analysis, even under the assumption to neglect the

baryon mass of the galaxies the results look reasonable. They are of the same
order of magnitude of the standard cosmological model [15, 28]. The singularity
can, in principle, be removed, by following [29], if one introduces a non-linear
electrodynamics Lagrangian in the framework, which permits also to obtain a
bouncing with a power-law inflation where the Ricci scalar curvature works like
an inflaton field, see [29] for details. Clearly, the bouncing is in agreement with
the oscillating Universe.

We hope in further analyses which could insert the baryon mass too and
realize a better fine-tuning of the model with the cosmological observations.

4 Conclusions

We discussed an exact solution of the R2 theory of gravity. This solution rep-
resents the Ricci scalar curvature like a cosmological wave-packet with a wave-
length longer than the Hubble radius. The physical interpretation is that the
theory results to be in the form of standard General Relativity “embedded ” in an
effective scalar gravity. General Relativity results dominant a small scales like
the scale of the Solar System while the effective scalar field, which is is exactly
the Ricci scalar curvature, oscillates and results dominant at longer scales.

The proposed solution is viable and the analysis is consistent with various
astronomical observations like the Hubble Law, the cosmological redshift, the
anomalous acceleration of the Pioneer and the Dark Matter in the galaxy. The
final treatment in terms of the Einstein-Vlasov System shows reasonable results
which are within the standard bounds predicted by the cosmological observa-
tions.

The model is also consistent with the recent result in [29], which shows that
the introduction of a non-linear electrodynamics Lagrangian in the framework
of R2 gravity permits to remove the Initial Singularity of the Universe and to
obtain a bouncing with a power-law inflation where the Ricci scalar works like
an inflaton field.

An important point is that, at the present time, a unique Extended Theory
of Gravity which is consistent with all the astronomical observations has not
been found [3, 4]. The results of this paper suggest that the cosmological wave-
packet could be a potential candidate. We hope in further analyses to realize a
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better fine-tuning of the model with the cosmological observations.
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